Nuclear waste not a b or d it’s nuclear waste
Fe2O3 because O has a -2 charge and Fe and +3, you want the charges to equal each other so if you have 2 Fe with +3 charge the charge becomes 6 if you have 3 O with -2 charge the charge becomes 6.
Same here no one answers my questionssssss
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of ammonium carbonate and lead (II) nitrate is given as:
Ionic form of the above equation follows:
As, ammonium and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:
Hence, the net ionic equation is written above.
Answer:
The attractive force is negative and MgO has a higher melting point
Explanation:
From Couloumb's law:
Energy of interaction, E = k
where q1 and q2 are the charges of the ions, k is Coulomb's constant and r is the distance between both ions, i.e the atomic radii of the ions.
If you look at Coulomb's law, you note that in the force is negative (because q1 is negative while q2 is positive).
In addition to that, the compounds MgO and NaF have similar combined ionic radii, then we can determine the melting point trend from the amount of energy gotten
The melting point of ionic compounds is determined by 1. charge on the ions 2. size of ions. while NaF has smaller charges (+1 and -1), MgO (+2 and -2) has larger charges and greater combined atomic radii. This implies that the compound with greater force would have a higher melting point.
Hence the compound MgO would have a higher melting point than NaF.