Function is p(x)=(x-4)^5(x^2-16)(x^2-5x+4)(x^3-64)
first factor into (x-r1)(x-r2)... form
p(x)=(x-4)^5(x-4)(x+4)(x-4)(x-1)(x-4)(x^2+4x+16)
group the like ones
p(x)=(x-4)^8(x+4)^1(x-1)^1(x^2+4x+16)
multiplicity is how many times the root repeats in the function
for a root r₁, the root r₁ multiplicity 1 would be (x-r₁)^1, multility 2 would be (x-r₁)^2
so
p(x)=(x-4)^8(x+4)^1(x-1)^1(x^2+4x+16)
(x-4)^8 is the root 4, it has multiplicity 8
(x-(-4))^1 is the root -4 and has multiplicity 1
(x-1)^1 is the root 1 and has multiplity 1
(x^2+4x+16) is not on the real plane, but the roots are -2+2i√3 and -2-2i√3, each multiplicity 1 (but don't count them because they aren't real
baseically
(x-4)^8 is the root 4, it has multiplicity 8
(x-(-4))^1 is the root -4 and has multiplicity 1
(x-1)^1 is the root 1 and has multiplity 1
2:4 3:6 4:8
Any ratio equals 1:2 as long as you can divide the first number by itself to get 1 and the second number with the 1st number.
Example
2:4
Divide the first number by 2 and you get 1
Divide the second number by 2 and you get 2
So the ratio equals 1:2
Please make me brainliest
The correct answer is 70mm
<u>Given</u>:
Given that the data are represented by the box plot.
We need to determine the range and interquartile range.
<u>Range:</u>
The range of the data is the difference between the highest and the lowest value in the given set of data.
From the box plot, the highest value is 30 and the lowest value is 15.
Thus, the range of the data is given by
Range = Highest value - Lowest value
Range = 30 - 15 = 15
Thus, the range of the data is 15.
<u>Interquartile range:</u>
The interquartile range is the difference between the ends of the box in the box plot.
Thus, the interquartile range is given by
Interquartile range = 27 - 18 = 9
Thus, the interquartile range is 9.