Answer: It would be malleable, solids, luster, conductors, reactive
Explanation:
Answer:
b) +2 and +3.
Explanation:
Hello,
In this case, given the molecular formulas:
And:
We can relate the subscripts with the oxidation states by knowing that they are crossed when the compound is formed, for that reason, we notice that oxygen oxidation state should be -2 for both cases and the oxidation state of X in the first formula must be +2 since both X and O has one as their subscript as they were simplified:
Moreover, for the second case the oxidation state of X should be +3 in order to obtain 3 as the subscript of oxygen:
Thus, answer is b)+2 and +3
Best regards.
Answer:
The coordination sphere of a complex consists of <u><em>the central metal ion and the ligands bonded to it.</em></u>
Explanation:
The Coordination Compounds are sets of a central metal ion attached to a group of molecules or ions that surround it. They are also called metal complexes or simply complexes. Then they are compounds that have a central atom surrounded by a group of molecules or ions, the latter called ligands.
The central atom must have empty orbitals capable of accepting pairs of electrons, with the transition metals being the ones with the greatest tendency. Because of this, they can act as Lewis acids (electron pair acceptors). The ligands have unshared electron pairs, then acting as Lewis bases (electron pair donors).
When forming a complex, it is said that the ligands coordinate to the metal and the central metal and the ligands attached to it constitute the coordination sphere of the complex.
Finally, <u><em>the coordination sphere of a complex consists of the central metal ion and the ligands bonded to it.</em></u>
An atom is the smallest particle of an element that can take part in a chemical reaction.
An atom is made up of energy levels that contain electrons which are negatively charged and the nucleus which contains neutrons and protons that are negatively charge .
Due the positive charge of the nucleus of an atom, an atom always want to attract its electrons and keep them near it however it weakly attracts the other electrons of a nearby atom.