Answer:
Mass of water produced is 22.86 g.
Explanation:
Given data:
Mass of hydrogen = 2.56 g
Mass of oxygen = 20.32 g
Mass of water = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 20.32 g/ 32 g/mol
Number of moles = 0.635 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 2.56 g/ 2 g/mol
Number of moles = 1.28 mol
Now we will compare the moles of water with oxygen and hydrogen.
O₂ : H₂O
1 : 2
0.635 ; 2×0.635 = 1.27
H₂ : H₂O
2 : 2
1.28 : 1.28
The number of moles of water produced by oxygen are less thus it will be limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 1.27 × 18 g/mol
Mass = 22.86 g
Answer:
Volume of sample after droping into the ocean=0.0234L
Explanation:
As given in the question that gas is idealso we can use ideal gas equation to solve this;
Assuming that temperature is constant;
Lets
and
are the initial gas parameter before dropping into the ocean
and
and
are the final gas parameter after dropping into the ocean
according to boyle 's law pressure is inversly proportional to the volume at constant temperature.
hence,

P1=1 atm
V1=1.87L
P2=80atm
V2=?
After putting all values we get;
V2=0.0234L
Volume of sample after droping into the ocean=0.0234L
Answer:
Option c and d
Explanation:
John Dalton. In 1808, John Dalton proposed a theory known as Dalton’s Atomic Theory. The theory was published in a paper titled “A New Chemical Philosophy”. This theory was new to that era
The 5 postulates of Daltons' atomic theory are:
1. All the matters are made of atoms.
2. Atoms of different elements combine to form compounds
3. Compounds contain atoms in small whole-number ratios
4. Atoms can neither be created nor destroyed
. (This was later proven wrong )
5. All atoms of an element are identical and have the same properties (This was later proven wrong as atoms of same element may be different in case of elements having isotopes )
Therefore, options c and d are the answer.