Answer:
Si logra alcanzar el bus.
Explanation:
Para poder solucionar este problema debemos de tener en cuenta que Alicia corre a velocidad constante para poder alcanzar el bus. La formula de la cinematica que tiene en cuenta la velocidad constante es la siguiente:

donde:
Xf = Ubicacion del punto donde se encuentra el bus [m]
Xo = Ubicacion desde donde esta Alicia [m]
v = velocidad constante = 5 [m/s]
t = tiempo [s]
Xf - Xo = 15 [m]
15 = 5*t
t = 3 [s]
Ahora con el tiempo podemos encontrar la velocidad del bus por medio de la siguiente ecuacion de cinematica para la aceleracion constante:

donde:
Vf = velocidad del bus despues de los 3 [s]
Vi = velocidad inicial = 0
a = aceleracion = 0.5 [m/s^2]
Vf = 0 + (0.5*3)
Vf = 1.5 [m/s]
La velocidad del bus es menor que la velocidad de Alicia, por ende Alicia alcanzara el bus.
Answer:
Explanation:
Acceleration is equal to the change in velocity over the change in time, or
where the change in velocity is final velocity minus initial velocity. Filling in:
Note that I made the backward velocity negative so the forward velocity in our answer will be positive.
Simplifying that gives us:
and then isolating the final velocity, our unknown:
3.0(6.0) = v + 3.0 and
3.0(6.0) - 3.0 = v and
18 - 3.0 = v so
15 m/s = v and because this answer is positive, that means that the car is no longer rolling backwards (which was negative) but is now moving forward.
Answer:
Therefore the resistance of the conductor is 175Ω
Explanation:
Resistance:
- Resistance of a metallic conductor is directly proportional to its length(l).
- Resistance of a metallic conductor is inversely proportional to its cross section area(A).
The notation sign of resistance is R.
The unit of resistance is ohm (Ω).
Therefore,

and



ρ is the proportional constant.
It is also known as resistivity of that metal.
Given ρ=35×10⁻⁶Ω-m
l= 20 m
A= 4.0×10⁻⁶m²

=175Ω
Therefore the resistance of the conductor is 175Ω
<span>(a) E = ½ Q²/C, so ..
(b) E(max) = ½Li² (i=current), so .</span>
Answer:
<em>113.4 J</em>
Explanation:
<u>Elastic Potential Energy</u>
Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.

The spring has a natural length of 0.7 m and a spring constant of k=70 N/m. When the spring is stretched to a length of 2.5 m, the change of length is
Δx = 2.5 m - 0.7 m = 1.8 m
The energy stored in the spring is:

PE = 113.4 J