Answer:
a) wavelength = 656.3 nm
b) the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
Explanation:
Given that;
angle of diffraction Θₓ = 22.78°
incident angle Θ₁ = 0
slit separation d = 5900 lines per cm = 1/5900 cm = 10⁻²/5900 m = 0.01/5900 m
order of diffraction n = 1
wavelength λ = ?
to find the wavelength, we use the expression
λ = d (sinΘ₁ + sinΘₓ) / n
To find the wavelength λ;
λ = 0.01/5900 × (sin0 + sin22.78° )
λ = 6.5626 × 10⁻⁷ m
λ = 656.3 x 10⁻⁹ m
∴ λ = 656.3 nm
b)
According Balnur's series spectral lines; n₁ = 3, n₂ = 2 and
λ = R [ 1/n₂² - 1/n₁²]
where R is Rydberg's constant
from λ = R [ 1/n₂² - 1/n₁²]
R = 1/λ [n₂²n₁² / n₁² - n₂²]
R = 10⁹/ 656.3 [ 9 × 4 / 9 - 4 ]
R = 1.097 × 10⁷ m⁻¹
Therefore the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
Answer: Why are the speed values in Table 1 called "average" instead of "instantaneous"? The speeds are called average because they are a calculation of a course of distance divided by aduration of time. ... The average speed reduces.
HOPE IT HELPS:) HAVE A NICE DAY
Answer: mass = 48.47 kg.
Explanation:
Formula : Weight = mg , where m = mass of body , g= acceleration due to gravity .
Given: Weight = 475 N

Substitute all values in formula , we get

Hence, his mass = 48.47 kg.
Answer:
a. 192 m/s
b. -17,760 kPa
Explanation:
First let's write the flow rate of the liquid, using the following equation:
Q = A*v
Where Q is the flow rate, A is the cross section area of the pipe (A = pi * radius^2) and v is the speed of the liquid. The flow rate in both parts of the pipe (larger radius and smaller radius) needs to be the same, so we have:
a.
A1*v1 = A2*v2
pi * 0.02^2 * 12 = pi * 0.005^2 * v2
v2 = 0.02^2 * 12 / 0.005^2
v2 = 192 m/s
b.
To find the pressure of the other side, we need to use the Bernoulli equation: (600 kPa = 600000 N/m2)
P1 + d1*v1^2/2 = P2 + d1*v2^2/2
Where d1 is the density of the liquid (for water, we have d1 = 1000 kg/m3)
600000 + 1000*12^2/2 = P2 + 1000*192^2/2
P2 = 600000 + 72000 - 1000*192^2/2
P2 = -17760000 N/m2 = -17,760 kPa
The speed in the smaller part of the pipe is too high, the negative pressure in the second part means that the inicial pressure is not enough to maintain this output speed.