0.003 moles of NaOH was used in the titration.
<h3>What is titration?</h3>
The concentration of an identified analyte can be found using a simple laboratory technique called titration. As a standard solution with a given concentration and volume, a reagent known as the titrant or titrator is created.
By using a solution with a known concentration to measure the concentration of an unknown solution, this process is known as titration. To a known volume of the analyte (the unknown solution), the titrant (the known solution) is typically added from a buret until the reaction is finished. To ascertain the unknown concentration of an identifiable analyte, titration, commonly referred to as titrimetry, is a widely used quantitative laboratory analytical technique (Medwick and Kirschner, 2010). Volume measurements are a crucial component of titration
Concentration in mol/dm3 =
Amount of solution mol
= concentration in mol/dm3 × volume in dm3
Amount of sodium hydroxide
= 0.100 × 0.0250
= 0.00250 mol
To know more about titration, visit:
brainly.com/question/27394328
#SPJ9
A fusion reaction can be regarded as the type of reaction that occurs where two lighter elements come together in a type of reaction giving rise to a heavier/more massive element.
A fusion reaction always creates a more massive atomic nucleus (option c).
When the two lighter nuclei comes together in a reaction, a more heavier/massive nucleus is formed but its mass will still be less than the combined mass of the two reactant nuclei.
This also indicates that the left over mass may have been released as energy.
Learn more: brainly.com/question/18175586
Answer: the person standing up
Explanation:
the person has the potential to fall or move from position
Answer:
The pressures will remain at the same value.
Explanation:
A catalyst is a substance that alter the rate of a chemical reaction. It either speeds up the or slows down the rate of a chemical reaction.
While a catalyst affects the rate, it is noteworthy that it has no effect on the equilibrium position of the chemical reaction. A catalyst works by creating an alternative pathway for the reaction to proceed. Most times, it decreases the activation energy needed to kickstart the chemical reaction.
Hence, we know that it has no effect on the equilibrium position. Factors affecting equilibrium position includes, temperature and concentration of reactants and products( pressure in terms of gases).
The reactants and the products here are gaseous, and as such pressure affects the equilibrium position. Now, we have established that the equilibrium position is unaffected. And as such the pressure affecting it does not change.
Thus, we have established that the pressure of the products and reactants are unaffected and as such they remain at their value unaffected.