<span>Enzymes have three main characteristics. First, they increase the rate of a natural chemical reaction. Secondly, they typically only react with one specific substrate or reactant, and thirdly, enzyme activity is regulated and controlled within the cell through several different means, including regulation by inhibitors and activators. It is possible to group enzymes into different categories, including oxidases, transferases, hydrolases, lyaes, isomerases and ligases. In naming enzymes, the "-ase" suffix is often appended to the name of the substrate molecule upon which which the enzyme reacts. For example, the enzyme sucrase catalyzes the transformation of the sugar sucrose in to glucose and fructose. In this case, the "sucr-" suffix represents the molecule upon which the sucrase enzyme reacts. Not all enzymes are named according to this convention.</span>
The temperature is the same but the heat flow is the opposite.
Answer:
0.9715 Fraction of Pu-239 will be remain after 1000 years.
Explanation:
Where:
= decay constant
=concentration left after time t
= Half life of the sample
Half life of Pu-239 = [
Let us say amount present of Pu-239 today =
A = ?
0.9715 Fraction of Pu-239 will be remain after 1000 years.
First, consider the steps to heat the sample from 209 K to 367K.
1) Heating in liquid state from 209 K to 239.82 K
2) Vaporaizing at 239.82 K
3) Heating in gaseous state from 239.82 K to 367 K.
Second, calculate the amount of heat required for each step.
1) Liquid heating
Ammonia = NH3 => molar mass = 14.0 g/mol + 3*1g/mol = 17g/mol
=> number of moles = 12.62 g / 17 g/mol = 0.742 mol
Heat1 = #moles * heat capacity * ΔT
Heat1 = 0.742 mol * 80.8 J/mol*K * (239.82K - 209K) = 1,847.77 J
2) Vaporization
Heat2 = # moles * H vap
Heat2 = 0.742 mol * 23.33 kJ/mol = 17.31 kJ = 17310 J
3) Vapor heating
Heat3 = #moles * heat capacity * ΔT
Heat3 = 0.742 mol * 35.06 J / (mol*K) * (367K - 239.82K) = 3,308.53 J
Third, add up the heats for every steps:
Total heat = 1,847.77 J + 17,310 J + 3,308.53 J = 22,466.3 J
Fourth, divide the total heat by the heat rate:
Time = 22,466.3 J / (6000.0 J/min) = 3.7 min
Answer: 3.7 min