<span>Venus is hotter due to the greenhouse effect: Venus has an atmosphere about ninety times thicker than that of Earth, and made almost entirely of carbon dioxide, which is one of the gasses that causes the greenhouse effect on Earth.</span>
Answer:
i)20369 photons
ii) 40 ps
Explanation:
Momentum of one Sodium atom:

In other to stop it, it must absorb the same momentum in photons:

Now, for the minimun time, we use the speed of light and the wavelength. For the n photons:

Answer:
Kinetic energy is 1425.11 J.
Explanation:
Given:
Mass of the wrench is, 
Height of fall is, 
Force of resistance is, 
Now, the total energy at the top is equal to the potential energy of the wrench at the top since the kinetic energy at the top is 0.
Now, potential energy at the top is given as:

Now, the potential energy at the top is converted to kinetic energy at the bottom and some energy is wasted in overcoming the resistance force by air.
Potential Energy = Kinetic energy + Energy to overcome resistance.
⇒ Kinetic energy = Potential Energy - Energy to overcome resistance.
Energy to overcome resistance force is the work done by the wrench against the resistance force and is given as:

Therefore, Kinetic energy at the bottom is given as:

Hence, the kinetic energy of the wrench be when it hits the water is 1425.11 J.
Answer:
Net force on the block is 32 N.
Acceleration of the object is 6.4 m/s².
Explanation:
Let the acceleration of the object be
m/s².
Given:
Mass of the block is, 
Force of pull is, 
Frictional force on the block is, 
The free body diagram of the object is shown below.
From the figure, the net force in the forward direction is given as:

Now, from Newton's second law of motion, net force is equal to the product of mass and acceleration. So,

Therefore, the acceleration of the object in the forward direction is 6.4 m/s².
Answer:
0.8712 m/s²
Explanation:
We are given;
Velocity of first car; v1 = 33 m/s
Distance; d = 2.5 km = 2500 m
Acceleration of first car; a1 = 0 m/s² (constant acceleration)
Velocity of second car; v2 = 0 m/s (since the second car starts from rest)
From Newton's equation of motion, we know that;
d = ut + ½at²
Thus,for first car, we have;
d = v1•t + ½(a1)t²
Plugging in the relevant values, we have;
d = 33t + 0
d = 33t
For second car, we have;
d = v2•t + ½(a2)•t²
Plugging in the relevant values, we have;
d = 0 + ½(a2)t²
d = ½(a2)t²
Since they meet at the next exit, then;
33t = ½(a2)t²
simplifying to get;
33 = ½(a2)t
Now, we also know that;
t = distance/speed = d/v1 = 2500/33
Thus;
33 = ½ × (a2) × (2500/33)
Rearranging, we have;
a2 = (33 × 33 × 2)/2500
a2 = 0.8712 m/s²