Answer:
Average force = 67 mn
Explanation:
Given:
Initial velocity u = 0 m/s
Final velocity v = 67 m/s
Time t = 1 ms = 0.001 sec.
Computation:
Using Momentum theory
Change in momentum = F × Δt
(v-u)/t = F × Δt
F × 0.001 = (67 - 0)/0.001
F= 67,000,000
Average force = 67 mn
The temperature is colder, and the water pressure is higher.
The rms speed can be calculated using the following rule:
rms = sqrt ((3RT) / (M)) where:
R is the gas constant = 8.314 J/mol-K
T is the temperature = 31.5 + 273 = 304.5 degrees kelvin
M is the molar mass = 2*14 = 28 grams = 0.028 kg
Substitute with the givens to get the rms speed as follows:
rms speed = sqrt [(3*8.314*304.5) / (0.028)] = 520.811 m/sec
Answer:
Explanation:
BMI= weight/(height × height) ; weight in kilogram and height in metter
= 58kg / (1.61m × 1.61m )
= (58/ 2.5921) kg/
= 22.375 kg/
≈ 22.4 kg/
Given values:
Mass of the steel ball, m = 100 g = 0.1 kg
Height of the steel ball, h1 = 1.8 m
Rebound height, h2 = 1.25 m
a. PE= mgh
0.1 x 9.8 x 1.8 =
1.764 Joules
b. KE = PE ->
1.764 Joules
c. KE= 1/2 mv square
so v = square root 2ke/m
square root 2 x 1.764/ 0.1
= 5.93 m/s
d. KE=PE=mgh square
0.1 x 9.8 x 1.21 =
1.186 joules
velocity of rebond is square root 2x 1.186/ 0.1 = 4.87 m/s