Yes. Science support that idea that humans have influenced global warming but in turn, we have explored our knowledge, and modernize our environment with that!
Knowledgeable individual will propose all the aspects of science including positive and negative, he would consider that, scientists influenced global warming, but the price (in the form of appliances and any science products) is very beneficial for us nowadays. As compared to him, differing opinion might be something rude, like science has just influenced global warming and green-house effects, but he would ignore all the positive effects, he might be supportive for science too. In that situation he will ignore, other side.
Hope this helps!
The effort distance will be 160 cm.Applying the moment at the center as follows will provide the effort distance:
<h3 /><h3>What is the mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system, it is used to obtain the efficiency of forces in levers and pulleys.
Given data;
Effort,
Load,
Distance from the fulcrum,
The effort distance is found by applying the moment at the center as;

Hence, the effort distance will be 160 cm
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
#SPJ1
Refer to the diagram shown below.
Still-water speed = 9.5 m/s
River speed = 3.75 m/s down stream.
The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.
The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s
The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°
Answer: 10.2 m/s at 21.5° downstream.
Answer:
L = m v r (The momentum remains constant)
Explanation:
Even in an ellipsoidal orbit, the law of conservation of angular momentum always apply. When the plant approached the perihelion, the radius of the orbit decreases and the speed of the star increases to conserve the momentum. Similarly, when the planet approaches the aphelion, the speed of the star decreases as the radius increases to conserve the momentum. So, the momentum at a particular instant can be calculated by L = m v r