Should be true.
it's been awhile since I was learning this
Given :
The mass of the balloon was 1890 kg and had a volume of 11,430 m3 .
The balloon floats at a constant height of 6.25m above the ground.
To Find :
The density of the hot air in the balloon.
Solution :
We know,
Volume × ( Density of surrounding air - Density of hot air ) = mass
Putting given values in above equation, we get :

Therefore, the density of hot air in the balloon is 1.125 kg m³.
Answer:
9) This is a case of deceleration
10)-0.8 ms-2
b) acceleration is the change in velocity with time
11)
a) 100 ms-1
b) 100 seconds
12) 10ms-1
13) more information is needed to answer the question
14) - 0.4 ms^-2
15) 0.8 ms^-2
Explanation:
The deceleration is;
v-u/t
v= final velocity
u= initial velocity
t= time taken
20-60/50 =- 40/50= -0.8 ms-2
11)
Since it starts from rest, u=0 hence
v= u + at
v= 10 ×10
v= 100 ms-1
b)
v= u + at but u=0
1000 = 10 t
t= 1000/10
t= 100 seconds
12) since the sprinter must have started from rest, u= 0
v= u + at
v= 5 × 2
v= 10ms-1
14)
v- u/t
10 - 20/ 25
10/25
=- 0.4 ms^-2
15)
a=v-u/t
From rest, u=0
8 - 0/10
a= 8/10
a= 0.8 ms^-2
Answer:
Length of pipe
meter
Explanation:
Speed of a transverse wave on a string

where F is the tension in string and
is the mass per unit length
Thus,

Substituting the given values we get -

Speed of a transverse wave on a string

For third harmonic wave , frequency is equal to

Substituting the given values, we get -

Length of pipe

Substituting the given values we get
for first harmonic wave

Length of pipe
meter
Answer:
Explanation:
Magnetic field creates a force perpendicular to a moving charge in its field which is equal to Bev where B is magnetic field , e is amount of charge on the moving charge and v is the velocity of charge particle .
This force provides centripetal force for creation of circular motion. If r be the radius of the circular path
Bev = mv² / r
r = mv / Be
2 ) If an electron is accelerated by an electric field created by potential difference V then electric field
= V / d where d is distance between two points having potential difference v .
force on charged particle
electric field x charge
= V /d x e
work done by field
= force x distance
= V /d x e x d
V e
This is equal to kinetic energy created
V e = 1/2 mv²
= 1/2 m (r²B²e² / m² )
V = r²B²e/ 2 m
e / m = 2 V/ r²B²
3 )
B = 
In Helmholtz coils , distance between coil is equal to R so Z = R/2
B = 
For N turns of coil and total field due to two coils
B = 
= 
= 9.0 x 10^-7 NI/R