The ratio of concentration of ionized acid to the initial concentration of acid multiplied by 100 will give the percent ionization of a weak acid in water increases as the concentration of acid decreases.
Explanation:
Percent ionization is used for quantifying the number of ions present in the weak acid when dissolved in a solution. So it is similar to the pKa value. The percent ionization value can be determined as negative log of dissociation constant. Also the as the number of ions increases in weak acid, the concentration of acid will be decreasing . It can be calculated using the formula for percent ionization as follows:

As the water volume or concentration increases, the acid will get diluted much more thus leading to decrease in the concentration of acid.
So the ratio of concentration of ionized acid to the initial concentration of acid multiplied by 100 will give the percent ionization of a weak acid in water increases as the concentration of acid decreases.
A.. in case of any problems that may occur you would know what company to call
The Impulse delivered to the baseball is 89 kgm/s.
To solve the problem above, we use the formula of impulse.
⇒ Formula:
- I = m(v-u)................. Equation 1
Where:
- I = Impulse delivered to the baseball
- m = mass of the baseball
- v = Final velocity of the baseball
- u = initial speed of the baseball
From the question,
⇒ Given:
- m = 0.8 kg
- u = 67 m/s
- v = -44 m/s
⇒ Substitute these values into equation 1
- I = 0.8(-44-67)
- I = 0.8(-111)
- I = -88.8
- I ≈ -89 kgm/s
Note: The negative tells that the impulse is in the same direction as the final velocity and therefore can be ignored.
Hence, The Impulse delivered to the baseball is 89 kgm/s.
Learn more about impulse here: brainly.com/question/7973509
Answer:
0.832
Explanation:
8.320 x 10 to the negative 1st power is 0.832