Answer:
3) Warm Temperatures and High pressures
Explanation:
This is the typical characteristic of southern air masses moving north
The answer is:
E per gram = 0.45 V
The explanation:
when MnO2 is the substance who oxidized here so, the oxidizing agent and the anode here is Li.
and when the molar mass of Li is = 7 g/mol
and in our reaction equation we have 1 mole of Li will give 3.15 V of the electrical energy
that means that :
7 g of Li gives → 3.15 V
So 1 g of Li will give→ ???
∴ The E per gram = 3.15 V / 7 g of Li
= 0.45 V
It will take 1.11 min to heat the sample to its melting point.
Melting point = - 20°C
Boiling point = 85°C
∆H of fusion = 180 J/g
∆H of vap = 500 J/g
C(solid) = 1.0 J/g °C
C(liquid) = 2.5 J/g °C
C(gas) = 0.5 J/g °C
Mass of sample = 25 g
Initial temperature = - 40°C
Final temperature = 100°C
Rate of heating = 450 J/min
Specific heat capacity formula:- q = m ×C×∆T
Here, q = heat energy
m = mass
C = specific heat
∆T = temperature change
Melting point = - 20°C
C(solid) = 1.0 J/g °C
∆T = final temperature - initial temperature = -20 - (-40) = 20
Put these value in Specific heat capacity formula
q = m ×C×∆T
q = 25×1.0×20
=500J
The Rate of heating = 450 J/min
i.e. 450J = 1min
so, 500J = 1.11min
1.11 minutes does it take to heat the sample to its melting point.
The specific heat capacity is defined as the amount of heat absorbed in line with unit mass of the material whilst its temperature increases 1 °C.
Learn more about specific heat capacity here:- brainly.com/question/26866234
#SPJ4
Answer:
Acceleration:
Speed/Time
Change in speed or velocity over a specific amount of time
Speed:
Distance/Time
Change in distance over a specific amount of time
Velocity:
Distance/Time
Speed in a given direction
Answer:
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
Explanation:
The balanced reaction between nitrogen and hydrogen molecules to give ammonia molecules is:

Thus one molecule of nitrogen will react with three molecules of hydrogen to give two molecules of ammonia.
We have six molecules of each nitrogen and hydrogen in the closed container and they undergo complete reaction it means the limiting reagent is hydrogen. For six molecules of nitrogen, eighteen molecules of hydrogen will be required.
So six molecules of hydrogen will react with two molecules of nitrogen to give four molecules of ammonia.
The product mixture will have
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.