Answer:

Explanation:
From the question we are told that:
Chemical Reactions:
X=A⇌B,ΔG= 14.8 kJ/mol
Y=B⇌C,ΔG= -29.7 kJ/mol
Z=C⇌D,ΔG= 8.10 kJ/mol
Since
Hess Law
The law states that the total enthalpy change during the complete course of a chemical reaction is independent of the number of steps taken.
Therefore
Generally the equation for the Reaction is mathematically given by

Therefore the free energy, ΔG is



Answer:
The molar concentration of Cu²⁺ in the initial solution is 6.964x10⁻⁴ M.
Explanation:
The first step to solving this problem is calculating the number of moles of Cu(NO₃)₂ added to the solution:

n = 1.375x10⁻⁵ mol
The second step is relating the number of moles to the signal. We know the the n calculated before is equivalent to a signal increase of 19.9 units (45.1-25.2):
1.375x10⁻⁵ mol _________ 19.9 units
x _________ 25.2 units
x = 1.741x10⁻⁵mol
Finally, we can calculate the Cu²⁺ concentration :
C = 1.741x10⁻⁵mol / 0.025 L
C = 6.964x10⁻⁴ M
Answer:
The maximum potential energy of the child will be maximum at the two end points.
The maximum kinetic energy of the <em>child </em>occurs at the lowest point of the swing.
The potential energy of the child depends on the displacement of the child.
P.E = mgh
The maximum height attained occurs at the two end points of her swing motion.
Thus, the maximum potential energy of the child will be maximum at the two end points.
The kinetic energy of the child depends on the velocity of the child
K.E = ¹/₂mv²
The maximum velocity of the swing occurs at the lowest point of the swing.
Thus, the maximum kinetic energy of the child occurs at the lowest point of the swing.
Hope this helps!
Answer:
The pressure remains constant
Explanation:
this is an example in charles law where as the temperature increases so does the volume.