Answer:
<h2>6.64 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>6.64 moles</h3>
Hope this helps you
Answer:
1. the group number of sodium is 1 and it is a metal
2. the group number of helium is 18 and it is a nonmetal
3. the group number of iodine is 17 and it is a nonmetal
4.the group number of calcium is 2 and it is a metal
5. lithium has similar properties to potassium
6. calcium has similar properties to magnesium
7. neon has similar properties to xenon
8. Iodine has similar properties to chlorine
Answer:
D
Explanation:
( I hope that this helps )
The answer is-
is octahedral in electronic and molecular geometry with 6 Fluorine atoms bonded to central atom S.
Lewis structures are the diagrams in which the valence electrons of the atoms of a compound are arranged around the atoms showing the bonding between the atom and the lone pair of electrons existing in the molecule.
Determine the molecular geometry of
.
- Valence Shell Electron Pair Repulsion theory is commonly known as VSEPR theory and it helps to predict the geometry of molecules.
- According to this theory, electrons are arranged around the central atom of the molecule in such a way that there is minimum electrostatic repulsion between these electrons.
- Now, calculate the total number of valence electrons in
.

Valence electrons of S = 6
Valence electrons of F = 7
Thus, the valence electrons in
are-

- The Lewis structure of
is - (Image attached). - In the structure, the number of atoms bonded to central atom (S) = 6.
- Number of non-bonding electron pairs on the central atom = 0 (as all the valence electrons are bonded to F).
- Electronic geometry in case of 6 bond pairs is octahedral.
- Molecular geometry us also octahedral with bond angles 90°.
- Central atom is sp3d2 hybridised.
is a non-polar molecule.
To learn more about Lewis structures visit:
brainly.com/question/12307841?referrer=searchResults
#SPJ4
<u>Answer:</u> The concentration of
required will be 0.285 M.
<u>Explanation:</u>
To calculate the molarity of
, we use the equation:

Moles of
= 0.016 moles
Volume of solution = 1 L
Putting values in above equation, we get:

For the given chemical equations:

![Ni^{2+}(aq.)+6NH_3(aq.)\rightleftharpoons [Ni(NH_3)_6]^{2+}+C_2O_4^{2-}(aq.);K_f=1.2\times 10^9](https://tex.z-dn.net/?f=Ni%5E%7B2%2B%7D%28aq.%29%2B6NH_3%28aq.%29%5Crightleftharpoons%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%2BC_2O_4%5E%7B2-%7D%28aq.%29%3BK_f%3D1.2%5Ctimes%2010%5E9)
Net equation: ![NiC_2O_4(s)+6NH_3(aq.)\rightleftharpoons [Ni(NH_3)_6]^{2+}+C_2O_4^{2-}(aq.);K=?](https://tex.z-dn.net/?f=NiC_2O_4%28s%29%2B6NH_3%28aq.%29%5Crightleftharpoons%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%2BC_2O_4%5E%7B2-%7D%28aq.%29%3BK%3D%3F)
To calculate the equilibrium constant, K for above equation, we get:

The expression for equilibrium constant of above equation is:
![K=\frac{[C_2O_4^{2-}][[Ni(NH_3)_6]^{2+}]}{[NiC_2O_4][NH_3]^6}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BC_2O_4%5E%7B2-%7D%5D%5B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%5D%7D%7B%5BNiC_2O_4%5D%5BNH_3%5D%5E6%7D)
As,
is a solid, so its activity is taken as 1 and so for 
We are given:
![[[Ni(NH_3)_6]^{2+}]=0.016M](https://tex.z-dn.net/?f=%5B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%5D%3D0.016M)
Putting values in above equations, we get:
![0.48=\frac{0.016}{[NH_3]^6}}](https://tex.z-dn.net/?f=0.48%3D%5Cfrac%7B0.016%7D%7B%5BNH_3%5D%5E6%7D%7D)
![[NH_3]=0.285M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.285M)
Hence, the concentration of
required will be 0.285 M.