2.B
4.C
3.D
1.C
5.C
Theses are the right answer
Answer:
hi iam 8 and a girl your hot
Explanation:
When an atom bonds another atom,
the reaction that takes place is the combination reaction. The reaction will be
A + B → AB, where AB is the combined product of the reactants A and B. An
example is H2 + 1/2O2 → H2O
The closure temperature represents the point when isotopes are no longer free to move out of a crystal lattice.
Answer: Option C
<u>Explanation:</u>
The closure temperature can also be termed as blocking temperature. It is mostly used in radiometric dating. As the temperature decreases, below a certain point the isotopes may get freeze in their lattice positions. And there may be slowing of diffusion.
At the closure temperature, that rate of diffusion will be zero as the isotopes will be no longer free to move out of crystal lattice. So, this is termed as closure or blocking temperature. As the isotopes loose their ability to move, their concentration will remain fixed in their position leading to measurement of radiation dating.
Answer:
0.312 m/s
Explanation:
Elastic collisions conserve momentum and kinetic energy
The velocity of the center of mass will not change. It continues at
0.00521(443) / 14.80521 = 0.155893... ≈ 0.156 m/s
To conserve kinetic energy we can think of the center of mass (CoM) as an ideal spring returning to each mass that strikes it an identical speed of collision in the opposite direction.
The CoM sees the target approach at - 0.156 and will see it depart at 0.156 m/s
A ground based observer sees the target depart at the velocity of the CoM plus the relative velocity .
v = 0.156 + 0.156 = 0.312 m/s