Ricks velocity would be zooomin out because it would fall off so strongly so it’d change and it’s weight too
Water must absorb energy in order to melt, evaporate, or get warmer.
Answer:
g = 11.2 m/s²
Explanation:
First, we will calculate the time period of the pendulum:

where,
T = Time period = ?
t = time taken = 135 s
n = no. of swings in given time = 98
Therefore,

T = 1.38 s
Now, we utilize the second formula for the time period of the simple pendulum, given as follows:

where,
l = length of pendulum = 54 cm = 0.54 m
g = acceleration due to gravity on the planet = ?
Therefore,

<u>g = 11.2 m/s²</u>
Answer:
1.2 × 10^27 neutrons
Explanation:
If one neutron = 1.67 × 10^-27 kg
then in 2kg...the number of neutrons
; 2 ÷ 1.67 × 10^-27
There are.... 1.2 × 10^27 neutrons
For an object`s motion, the Kinematic equation is,

Here, v is the final velocity and h is stands for the height of the object and a is the acceleration of the object.
As according to question,
and 
Thus, putting these values in above equation, we get

or


Therefore, initial velocity is 2.8 m/s