The force of friction is given by:
f = μR, where μ is the friction coefficient and R is the reaction force, which will be equal to the weight.
100 = μ x 130
μ = 0.77
Answer:
The voltage across a semiconductor bar is 0.068 V.
Explanation:
Given that,
Current = 0.17 A
Electron concentration 
Electron mobility 
Length = 0.1 mm
Area = 500 μm²
We need to calculate the resistivity
Using formula of resistivity


Put the value into the formula


We need to calculate the resistance
Using formula of resistance



We need to calculate the voltage
Using formula of voltage

Put the value into the formula


Hence, The voltage across a semiconductor bar is 0.068 V.
Answer: 1160 m
Explanation:
Speed = distance / time. Plug in 40 m/s for speed and 29 s for time in order to get the distance, 1160 m.
It is given that an<span> airplane is flying through a thundercloud at a height of 2000 m.
</span><span>
Since the parity of charges is opposite and the airplane lies between the two charges and both the electric fields are in the same direction at the plane. Therefore, the magnitudes of the electric field at the aircrafts will add up.
Now, check the image to see the calculations:
</span>
Answer:
22.1 V
Explanation:
We are given that




Using 
We know that

In series



Substitute the values




Voltage across the 2.5 square cm wire=
Voltage across the 2.5 square cm wire=
Voltage across the 2.5 square cm wire=22.1 V