Answer:
Explanation:
To find Sammy's course you have to add the two velocities (vectors), 18 mph 327º and 4 mph 60º.
To add the two vectors analytically you decompose each vector into their vertical and horizontal components.
<u>1. 18 mph 327º</u>
- Horizontal component: 18 mph × cos (327º) = 15.10 mph
- Vertical component: 18 mph × sin (327º) = - 9.80 mph

<u>2. 4 mph 60º</u>
- Horizontal component: 4 mph × cos (60º) = 2.00 mph
- Vertical component: 4 mph × sin (60º) = 3.46 mph

<u>3. Addition:</u>
You add the corresponding components:

To find the magnitude use Pythagorean theorem:
<u>4. Direction:</u>
Use the tangent ratio:
Find the inverse:
Answer:
Following are the solution to the given question:
Explanation:
Its best approach to this measurement ought to be to indicate that there was a mistake throughout the calculation, as well as the gathering of further details while researching cells for bacteria, directly measuring the cell length of a colony. This chart illustrates its data, which scientists have observed that there's still a measurement.
<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>
Answer:
Some students appreciated the social aspect of Zoom classrooms, while others felt online education worked best for them when they were working on their own. ... Students said they appreciated having a well-planned work week and didn't appreciate “surprise” assignments online any more than they appreciate them in class
Explanation:
What's I know I said
What do you u write it