I expect that they will <em>add</em>, and their effect at every location will be the <em>sum</em> of their individual effects at that location.
For example:
If they're acting at the same point and in opposite directions, the effect will be the same as a single force at that point, with strength equal to their difference, and in the direction corresponding to whichever one is stronger.
The first, third, fourth, fifth and sixth
Answer:
The value is 
Explanation:
From the question we are told that
The focal length of the objective is 
The focal length of the eyepiece is 
The tube length is 
Generally the magnitude of the overall magnification is mathematically represented as

Where
is the objective magnification which is mathematically represented as

=> 
=> 
is the eyepiece magnification which is mathematically evaluated as



So


Explanation:
a. Average speed = distance / time
= 100 m / 70 s
= 1.43 m/s
b. Average displacement = displacement / time
= 0 m / 70 s
= 0 m/s
Distance is the length of the path traveled. Displacement is the difference between the final position and initial position.
Answer:
e = 1.21 mV
Explanation:
given,
length of rod = 10 m
height of drop = 4.89 m
Earth’s magnetic field = 12.4 µT
acceleration of gravity = 9.8 m/s²
velocity of the beam


v = 9.79 m/s
emf of the beam
e = B l v
e = 12.4 x 10⁻⁶ x 9.79 x 10
e = 1.21 x 10⁻³ V
e = 1.21 mV