Hello!
I'm unfamiliar with the book you are reading,
However, based on textual evidence, I think your answer relies somewhere in answer choice A or D.
I hope this helps!
Answer:
t = 0.24 s
Explanation:
As seen in the attached diagram, we are going to use dynamics to resolve the problem, so we will be using the equations for the translation and the rotation dyamics:
Translation: ΣF = ma
Rotation: ΣM = Iα ; where α = angular acceleration
Because the angular acceleration is equal to the linear acceleration divided by the radius, the rotation equation also can be represented like:
ΣM = I(a/R)
Now we are going to resolve and combine these equations.
For translation: Fx - Ffr = ma
We know that Fx = mgSin27°, so we substitute:
(1) mgSin27° - Ffr = ma
For rotation: (Ffr)(R) = (2/3mR²)(a/R)
The radius cancel each other:
(2) Ffr = 2/3 ma
We substitute equation (2) in equation (1):
mgSin27° - 2/3 ma = ma
mgSin27° = ma + 2/3 ma
The mass gets cancelled:
gSin27° = 5/3 a
a = (3/5)(gSin27°)
a = (3/5)(9.8 m/s²(Sin27°))
a = 2.67 m/s²
If we assume that the acceleration is a constant we can use the next equation to find the velocity:
V = √2ad; where d = 0.327m
V = √2(2.67 m/s²)(0.327m)
V = 1.32 m/s
Because V = d/t
t = d/V
t = 0.327m/1.32 m/s
t = 0.24 s
Answer:
Cytokines is the answer
Explanation:
it is another word for the chemical messanger
Answer:
i am pretty sure you are correct and so sorry if i am wrong i am just trying to help no need to give me anything if i am right but it might be the one abouve the one you chose :) please let me know if i am wrong or right
Explanation:
Answer:
the mass of the air in the classroom = 2322 kg
Explanation:
given:
A classroom is about 3 meters high, 20 meters wide and 30 meters long.
If the density of air is 1.29 kg/m3
find:
what is the mass of the air in the classroom?
density = mass / volume
where mass (m) = 1.29 kg/m³
volume = 3m x 20m x 30m = 1800 m³
plugin values into the formula
1.29 kg/m³ = <u> mass </u>
1800 m³
mass = 1.29 kg/m³ ( 1800 m³ )
mass = 2322 kg
therefore,
the mass of the air in the classroom = 2322 kg