Answer:
imma be honest I dint really know
0.289352 days is the 25000 seconds.
IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.
Answer:
Explanation:
Initial angular velocity ω₀ = 151 x 2π / 60
= 15.8 rad /s
final velocity = 0
Angular deceleration α = 2.23 rad / s
ω² = ω₀² - 2 α θ
0 = 15.8² - 2 x 2.23 θ
= 55.99 rad
one revolution = 2π radian
55.99 radian = 55.99 / 2 π no of terns
= 9 approx .
Answer:
3secs
Explanation:
Given the following parameters
height H= 81.3m
Velocity v = 12.4m/s
Required
Time it take to reach the ground
Using the equation of motion
H = ut+1/2gt²
81.3 = 12.4t + 1/2(9.8)t²
81.3 = 12.4t + 4.9t²
4.9t² + 12.4t - 81.3 = 0
Using the general formula to find t
t = -12.4±√12.4²-4(4.9)(-81.3)/2(4.9)
t = -12.4±√153.76+1593.48/2(4.9)
t = -12.4±√1747.24/9.8
t = -12.4+41.8/9.8
t = 29.4/9.8
t = 3secs
Hence it took 3secs to reach the ground