Answer:
Their average kinetic energy increases
Explanation:
The average kinetic energy of the rice molecules increases as the pot is left on the cooking stove.
Heat is transferred to the pot by conduction from the heat source. The heat is then transferred to the rice in the cooking pot by convection.
- As the water in the pot heats up.
- The rice gains thermal energy.
- This causes the molecules of the rice particles to start vibrating.
- As the molecules vibrate about their fixed position, their thermal energy continues to increase.
- Therefore, the amount of heat absorbed by the rice increases with time and this actually cooks the food.
Answer:
There is a lot of empty space between them
Explanation:
We know that gas molecules are loosely packed,
Therefore there is a lot of intermolecular space...(Which basically means that there is a lot of space between the molecules or particles in a gas)
Happy to help.
Pls mark as Brainliest.
Answer:
No.
Explanation:
During chemical reaction, atomes cannot be created or destroyed, they can only react together to form <em>E</em><em>l</em><em>e</em><em>m</em><em>e</em><em>n</em><em>t</em><em> </em>or <em>C</em><em>o</em><em>m</em><em>p</em><em>o</em><em>u</em><em>n</em><em>d</em><em> </em>at the <em>P</em><em>r</em><em>o</em><em>d</em><em>u</em><em>c</em><em>t</em><em> </em>side.
Answer:
It would produce ethane (CH₃CH₃)
Explanation:
Ethylmagnesium bromide (CH₃CH₂MgBr) is a Grignard's reagent.
It is a highly reactive substance, and as any alkylmagnesium bromide
(R-CH₂MgBr) it reacts with water to produce an alkane (R-CH₃). R stands for any carbon structure bonded to that functional group.
The pressure of the gas is 1.0 bar.
<em>pV</em> = <em>nRT</em>
<em>T</em> = (0 + 273.15) K = 273.15 K
<em>p</em> = (<em>nRT</em>)/<em>V</em> = (2.0 mol × 0.083 14 bar·L·K⁻¹mol⁻¹ × 273.15 K)/44.8 L = 1.0 bar