Answer:
Starting from the beginning.
There is a radio signal that is received by the radio.
The radio interprets the signal and produces a current in response to it.
That current goes to a membrane that oscillates producing sound, the oscillation of the membrane is the first mechanical energy event here.
These oscillations can travel in material mediums, for example, the air. Then there is a production of waves (soundwaves) that travel in the air (second event).
Those waves now hit the wall that separates you and your neighbor, as the wall is made of a material, the soundwaves can travel through it, but they will be dispersed (a part of the waves rebounds on the wall, and another part is dissipated as the wave travels through the wall), there is also a transmitted part of the wave, that is now in your house. (this change of medium will be the third event). Now only the lower frequencies survive, this is why the sound is "muffled".
Those remaining frequencies now travel in your house, and when they reach your ear, your ear sends a signal to your brain and your brain interprets them as sound. The wave interacting with your ear will be the fourth and last mechanical energy event.
Answer:
1.25 m/s
Explanation:
m1v1+m2v2=m1v1f+m2v2f
(1425*13)+(1175*0)=(1425*v1f)+(1175*14.25)
18525+0=1425(v1f)+16743.75
1781.25=1425(v1f)
v1f=1.25 m/s
Answer:
Wavelength
Explanation:
Wavelength is the distance between two corresponding consecutive phases of a waveform. It is usually represented by λ in the mathematical expressions.
A continuous propagating wave repeats its wavelength over the distance.
A wave has crest and trough with respect to time and space.
Wave is defined as a disturbance of any parameter repeated in a cyclic manner over the given time.
Answer:
Stars emit colors of many different wavelengths, but the wavelength of light where a star's emission is concentrated is related to the star's temperature - the hotter the star, the more blue it is; the cooler the star, the more red it is
Explanation:
Distance travelled = Area under the line
= ut + ½ (v-u)t
Acceleration (a) = (v-u)/t and so (v-u) = at
Therefore,
Distance travelled (s) = ut + ½ (v-u)t = ut + ½ (at)t = ut + ½ at²
Thus,proved.