Answer:
See explanation
Explanation:
Notice that the condenser section includes both the hot water and space heater and station (3) is specified as being in the Quality region. Assume that 50°C is a reasonable maximum hot water temperature for home usage, thus at a high pressure of 1.6 MPa, the maximum power available for hot water heating will occur when the refrigerant at station (3) reaches the saturated liquid state. (Quick Quiz: justify this statement). Assume also that the refrigerant at station (4) reaches a subcooled liquid temperature of 20°C while heating the air.
Using the conditions shown on the diagram and assuming that station (3) is at the saturated liquid state
a) On the P-h diagram provided below carefully plot the five processes of the heat pump together with the following constant temperature lines: 50°C (hot water), 13°C (ground loop), and -10°C (outside air temperature)
b) Using the R134a property tables determine the enthalpies at all five stations and verify and indicate their values on the P-h diagram.
c) Determine the mass flow rate of the refrigerant R134a. [0.0127 kg/s]
d) Determine the power absorbed by the hot water heater [2.0 kW] and that absorbed by the space heater [0.72 kW].
e) Determine the time taken for 100 liters of water at an initial temperature of 20°C to reach the required hot water temperature of 50°C [105 minutes].
f) Determine the Coefficient of Performance of the hot water heater [COPHW = 4.0] (defined as the heat absorbed by the hot water divided by the work done on the compressor)
g) Determine the Coefficient of Performance of the heat pump [COPHP = 5.4] (defined as the total heat rejected by the refrigerant in the hot water and space heaters divided by the work done on the compressor)
h) What changes would be required of the system parameters if no geothermal water loop was used, and the evaporator was required to absorb its heat from the outside air at -10°C. Discuss the advantages of the geothermal heat pump system over other means of space and water heating
answer: 340 m/s
explanation: in this instance, the sound wave travels 340 meters in 1 second, so the speed of the wave is 340 m/s. remember, when there is a reflection, the wave doubles its distance. in other words, the distance traveled by the sound wave in 1 second is equivalent to the 170 meters down to the canyon wall plus the 170 meters back from the canyon wall.
Answer:
Top 10 Residential Uses for Solar Energy.
01. Solar Powered Ventilation Fans.
02. Solar Heating for Your Swimming Pool.
03. Solar Water Heater.
04. Solar House Heating.
05.Solar Powered Pumps.
06. Charging Batteries With Solar Power.
07. Power Your Home With Photo-Electric.
08. Solar Energy For Cooking.
09. Solar energy for outdoor lighting.
10. Solar transportation.
Answer:
the force applied to the smaller piston is 600 N
Explanation:
Given;
weight of the car, F = 15,000 N
radius of the lager piston, R = 0.2 m
radius of the smaller piston, r = 0.04 m
let the force applied to the smaller piston = f
The pressure applied on both piston is constant;

Therefore, the force applied to the smaller piston is 600 N