The resultant force in the direction the truck is headed is:
734N*cos(31) + 1084N*cos(23)
629N+998N = 1627N
Answer:
Friction force is independent of the direction of the contacting surfaces
Explanation:
It can go any way depending on how much force is being out on it.
Answer:

Explanation:
<u>Elastic Potential Energy
</u>
Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.

Given a rubber band of a spring constant of k=5700 N/m that is holding potential energy of PE=8600 J, it's required to find the change of length under these conditions.
Solving for Δx:

Substituting:

Calculating:


Answer:
Kinetic Energy.
Explanation:
The movement of a roller coaster is accomplished by the conversion of potential energy to kinetic energy. The roller coaster cars gain potential energy as they are pulled to the top of the first hill. As the cars descend the potential energy is converted to kinetic energy.
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s