Answer: Normal fault
Explanation:
The type of fault that is explained above is a normal fault. We should note that normal faults typically takes place in a divergent boundary in a scenario where the crusts may have been pulled apart.
Since the crust is pulled apart in this case, it leads to the downward movement of the hanging wall which leads to the football being above the hanging wall.
Answer: 185.5672566
Explanation: The friction is not relevant
Normal reaction is the force perpendicular to the surface.
this force resists the downwards forces applied which are gravity and a component of the applied force.
If you are given distance and a period of time, you can calculate
the speed. The velocity of an object is the rate of change of its position with
respect to a frame of reference, and is a function of time. Velocity is
equivalent to a specification of its speed and direction of motion (e.g. 60
km/h to the north).
(a) The angular acceleration of the wheel is given by

where

and

are the initial and final angular speed of the wheel, and t the time.
In our problem, the initial angular speed is zero (the wheel starts from rest), so the angular acceleration is

(b) The wheel is moving by uniformly rotational accelerated motion, so the angle it covered after a time t is given by

where

is the initial angular speed. So, the angle covered after a time t=3.07 s is
Answer:
The last two bearings are
49.50° and 104.02°
Explanation:
Applying the Law of cosine (refer to the figure attached):
we have
x² = y² + z² - 2yz × cosX
here,
x, y and z represents the lengths of sides opposite to the angels X,Y and Z.
Thus we have,

or

substituting the values in the equation we get,

or

or
X = 26.47°
similarly,

or

or
Y = 49.50°
Consequently, the angel Z = 180° - 49.50 - 26.47 = 104.02°
The bearing of 2 last legs of race are angels Y and Z.