Explanation:
A force that leads to movement of an object is known as work.
The energy present in an object due to its position in a gravitational field is known as gravitational potential energy.
Kinetic energy is the energy obtained by an object due to its motion.
For example, when Jerome is swinging on a rope then there occurs movement in the swing due to which the swing has kinetic energy.
Since, a force has been applied on the swing to make it move. Hence, a work is also done.
Therefore, we can conclude that if Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, work is being done.
The water tank waves are transverse waves while the sound waves are longitudinal waves.
<h3>What is a wave?</h3>
A wave is a disturbance along a medium which transfers energy. We know that the water tank waves are transverse waves while the sound waves are longitudinal waves.
The difference between the two is that in the water waves, the direction of the wave motion is perpendicular to the disturbance while in the sound waves, the the direction of the wave motion is parallel to the disturbance.
Learn more about waves:brainly.com/question/16263433?
#SPJ1
Given Information:
Resistance of circular loop = R = 0.235 Ω
Radius of circular loop = r = 0.241 m
Number of turns = n = 10
Voltage = V = 13.1 V
Required Information:
Magnetic field = B = ?
Answer:
Magnetic field = 0.00145 T
Explanation:
In a circular loop of wire with n number of turns and radius r and carrying a current I induces a magnetic field B
B = μ₀nI/2r
Where μ₀= 4πx10⁻⁷ is the permeability of free space and current in the loop is given by
I = V/R
I = 13.1/0.235
I = 55.74 A
B = 4πx10⁻⁷*10*55.74/2*0.241
B = 0.00145 T
Therefore, the magnetic field at the center of this circular loop is 0.00145 T
As it is given that the air bag deploy in time

total distance moved by the front face of the bag

Now we will use kinematics to find the acceleration




now as we know that

so we have

so the acceleration is 400g for the front surface of balloon