Answer: 20.775 g S
Explanation: 3.9x10^23 atoms = 0.648 mol
Atomic mass S = 32.08
S in grams = 20.775
C. NaOH ammmonia is also an base but not as strong as NaOH
Answer:
The advantage of this technique is that purified water as well as deposited metals can be re-used. It is necessary to use an inert electrode, such as platinum, because there is no metal present to conduct the electrons from the anode to the cathode.
<h3>
Answer:</h3>
0.75 moles NaOH
<h3>
Explanation:</h3>
We are given;
Volume of NaOH solution = 2.5 Liters
Molarity of NaOH = 0.300 M
We are required to calculate the moles of NaOH
We need to establish the relationship between moles, molarity and volume of a solution.
That would be;
Concentration/molarity = Moles ÷ Volume
Therefore;
Moles = Concentration × Volume
Thus;
Moles of NaOH = 0.300 moles × 2.50 L
= 0.75 moles
Therefore, the number of moles of NaOH is 0.75 moles
Answer:
Using the coarse adjustment knob of the microscope in high power may lead to the breaking of the slide if adjusted and raised the slide too much which can damage the sample as well as the high power lens.
In this case, I would recommend using the fine adjustment knob and moving away from the end of the viewing area of the microscope so there would no collision take place. The fine adjustment will help to get a clear image.