1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
3 years ago
15

If 478 watts of power are used in 14 seconds,how much work was done

Physics
1 answer:
zepelin [54]3 years ago
6 0

Answer:

6692J

Explanation:

Power is defined as the rate at which work is being done.

So,

    Power  = \frac{workdone}{time }  

  Work done  = Power x time

Given parameters:

Power  = 478watts

Time  = 14s

So;

 Work done  = 478 x 14  = 6692J

You might be interested in
The mass of a string is 7.7 × 10-3 kg, and it is stretched so that the tension in it is 190 N. A transverse wave traveling on th
Scilla [17]

Length of the strings = 2.33 m

3 0
2 years ago
What is a linear motion
nirvana33 [79]
Linear motion (also called rectilinear motion) is a motion along a straight line, and can therefore be described mathematically using only one spatial dimension.
4 0
3 years ago
An astronaut is taking a space walk near the shuttle when her safety tether breaks. what should the astronaut do to get back to
sergeinik [125]
The best way in handling in this situation is that in order for the astronaut to be able to get back to the shuttle is that he or she should take an object from his or her tool belt and to be thrown out away from the shuttle. This will allow her to weight lightly and safely return to the shuttle and would be easier for his or her to do so.
3 0
3 years ago
How is newtons law of motion used for testing the safety of automobile
Colt1911 [192]
Newton's first law of motion is an object in motion stays in motion until acted upon by another force. Driving at 30 mph in a car is going to stay constant until you crash the car into a wall, stopping the car.
3 0
3 years ago
A 3.9 g dart is fired into a block of wood with a mass of 24.6 g. The wood block is initially at rest on a 1.5 m tall post. Afte
Galina-37 [17]

Answer:

46.48m/s

Explanation:

The problem is a combination of the principle of conservation of linear momentum and projectile motion.

The principle of conservation of linear momentum states that in a closed system, the total momentum of colliding bodies before impact is equal to the total momentum after impact. The masses stated in the problem experienced an inelastic collision. In an inelastic collision, the bodies involved stick together after the collision and move with a common velocity.

For two bodies of masses m_1 and m_2 moving with velocities u_1 and u_2 before impact, if they experience inelastic collision, the conservation of their momenta is as stated in equation (1);

m_1u_1+m_2u_2=(m_1+m_2)v..................(1)

were v is their common velocity after impact. If the second mass m_2 was at rest before the impact, then its initial velocity u_2=0m/s. therefore m_2u_2=0. Equation (1) then becomes;

m_1u_1=(m_1+m_2)v..............(2)

In the problem stated, the second mass taken as the mass of the wooden block was at rest before the impact and the collision was inelastic since both the wood and the dart stuck together and moved with a common velocity after the impact. Therefore we can use equation (2) for the problem.

Given;

m_1=3.9g=0.0039kg\\u_1=?\\m_2=24.6g=0.0246kg\\v=?

Substituting these values into (2), we get the following;

0.0039*u_1=(0.0039+0.024)v\\0.0039u_1=0.0285v.........(3)

Their common v velocity after impact now makes both the wooden block and the dart (as a single body) to fall vertically through a height h of 1.5m over a range R of 3.5m as stated by the problem; hence by the principle of projectile motion for a body projected horizontally, the following relationship holds;

R= vt............(4)

were t is the time taken to fall through the height h. To obtain t we use the second equation of free fall under gravity;

h=\frac{1}{2}gt^2...........(5)

were g is acceleration due to gravity taken as 9.8m/s^2. Therefore;

1.5=\frac{1}{2}*9.8*t^2\\1.5=4.9t^2\\t^2=\frac{1.5}{4.9}=0.306\\t=\sqrt{0.306} =0.55s

We then substitute R and t into equation (4) to obtain v.

3.5=v*0.55\\v=\frac{3.5}{0.55}\\v=6.36m/s

We now further substitute this value of v into (3) to obtain u_1;

u_1=\frac{0.0285v}{0.0039}\\\\u_1=\frac{0.0285*6.36}{0.0039}\\\\u_1=\frac{0.18126}{0.0039}\\\\u_1=46.48m/s

4 0
3 years ago
Other questions:
  • 11. Scientists put a sample of water into a sealed tank. Water can be a solid, liquid, or gas. At first, the water was a liquid.
    5·1 answer
  • An engine moves a motorboat through water at a constant velocity of 22 meters/second. If the force exerted by the motor on the b
    5·1 answer
  • What is the definition of cell ?
    12·1 answer
  • A space station in the shape of a 100 m-diameter (50m radius) wheel is spinning so as to impart a linear tangential speed of 22.
    10·1 answer
  • The formula for Ohm’s law can be written: V equals <br><br> a. l x R<br> b. l/R<br> c. R/l
    15·1 answer
  • An oscillator makes 360 vibrations in 3 minutes.
    6·2 answers
  • Determine the poles of the magnet. Look at the three compass readings that are on top of the magnet. Label the
    6·2 answers
  • Calculate the mass of 1.35 moles of sodium chloride (NaCl).
    10·1 answer
  • Two 5 kg potted cacti, one in a black pot and one in a blue pot, slide down a sagging shelf in the same direction with
    12·1 answer
  • Phys-1A Horizontal Practice 2
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!