Answer:
768g
Explanation:
We can use to formula
. Here, N(A) is the final amount. N0 is the initial amount. t is the time elapsed, and
is the half life. Plugging in, we get the answer above.
Answer:
25 mL
Explanation:
Step 1: Given data
- Concentration of the concentrated solution (C₁): 2 M
- Volume of the concentrated solution (V₁): ?
- Concentration of the diluted solution (C₂): 0.1 M
- Volume of the diluted solution (V₂): 0.500 L
Step 2: Calculate the volume of the concentrated NaCl solution
We will use the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 0.1 M × 0.500 L / 2 M
V₁ = 0.025 L = 25 mL
Answer:
Average atomic mass of carbon = 12.01 amu.
Explanation:
Given data:
Abundance of C¹² = 98.89%
Abundance of C¹³ = 1.11%
Atomic mass of C¹² = 12.000 amu
Atomic mass of C¹³ = 13.003 amu
Average atomic mass = ?
Solution:
Average atomic mass of carbon = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass of carbon = (12.000×98.89)+(13.003×1.11) /100
Average atomic mass of carbon= 1186.68 + 14.43333 / 100
Average atomic mass of carbon = 1201.11333 / 100
Average atomic mass of carbon = 12.01 amu.