Answer:
Explanation:
what wheres the answer???
The four ionic species initially in solution are Na⁺, PO₄³⁻, Cr³⁺, and Cl⁻. Since the precipitate is composed of Cr³⁺ and PO₄³⁻ ions, the spectator ions must be Na⁺ and Cl⁻.
The complete ionic equation is 3Na⁺(aq) + PO₄³⁻(aq) + Cr₃⁺(aq) + 3Cl⁻(aq) → 3Na⁺(aq) + 3Cl⁻(aq) + CrPO₄(s).
So the balanced <u>net ionic equation</u> for this reaction would be Cr³⁺(aq) + PO₄³⁻(aq) → CrPO₄(s).
There are a total of 40 valence electrons in the PCl5 Lewis structure. Remember when you draw the Lewis structure for PCl5 that Phosphorous (P) is in Period 3 on the Periodic table. This means that it can hold more than 8 valence electrons.
I hope this helps and please don't report
1.
The balanced chemical reaction is:
N2 +3 I2 = 2NI3
We are given the amount of product formed.
This will be the starting point of our calculations.
3.58 g NI3 ( 1 mol NI3 / 394.71 g NI3 ) ( 3
mol I2 / 2 mol NI3 ) = 0.014 mol I2.
Thus, 0.014 mol of I2 is needed to form the
given amount of NI3.