First, we determine the energy released by the reaction using the heat capacity and change in temperature as such:
Q = cΔT
Q = 32.16 * 0.42
Q = 13.51 kJ
Next, we determine the moles of ammonia formed as the heat of formation is expressed in "per mole".
Moles = mass / molecular weight
Moles = 5/17
Moles = 0.294
Heat of formation = 13.51 / 0.294
The heat of formation of ammonia is 45.95 kJ/mol
The chemical industry is a very important contributor to the wealth of a country. For example it contributes over 1% to the Gross National Product (GNP) of European countries, which is over 6% of the total GNP produced by all manufacturing industries.
Answer is: ammonia experience only dispersion intermolecular forces with BF₃ (boron trifluoride) because BF₃ is only nonpolar molecule (vectors of dipole moments cansel each other, dipole moment is zero).
The London dispersion force (intermolecular force) <span>is a temporary attractive </span>force between molecules.