Hi
Acetylene and propane
I hope this help you!
Answer:
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
int main() {
string name[5];
int age[5];
int i,j;
for ( i = 0; i<=4; i++ ) {
cout << "Please enter student's name:";
cin >> name[i];
cout << "Please enter student's age:";
cin >> age[i];
}
for (i=0;i<=4;i++){
cout<<"Age of "<< name[i]<<" is "<<age[i]<<endl;
}
}
Output of above program is displayed in figure attached.
The power that must be supplied to the motor is 136 hp
<u>Explanation:</u>
Given-
weight of the elevator, m = 1000 lb
Force on the table, F = 500 lb
Distance, s = 27 ft
Efficiency, ε = 0.65
Power = ?
According to the equation of motion:
F = ma

a = 16.1 ft/s²
We know,

To calculate the output power:
Pout = F. v
Pout = 3 (500) * 29.48
Pout = 44220 lb.ft/s
As efficiency is given and output power is known, we can calculate the input power.
ε = Pout / Pin
0.65 = 44220 / Pin
Pin = 68030.8 lb.ft/s
Pin = 68030.8 / 500 hp
= 136 hp
Therefore, the power that must be supplied to the motor is 136 hp
Sorry need points I'm new
Answer:
The elevation at the high point of the road is 12186.5 in ft.
Explanation:
The automobile weight is 2500 lbf.
The automobile increases its gravitational potential energy in
. It means the mobile has increased its elevation.
The initial elevation is of 5183 ft.
The first step is to convert Btu of potential energy to adequate units to work with data previously presented.
British Thermal Unit -
Now we have the gravitational potential energy in lbf*ft. Weight of the mobile is in lbf and the elevation is in ft. We can evaluate the expression for gravitational potential energy as follows:
Where m is the mass of the automobile, g is the gravity, W is the weight of the automobile showed in the problem.
is the final elevation and
is the initial elevation.
Replacing W in the Ep equation
Finally, the next step is to replace the variables of the problem.
The elevation at the high point of the road is 12186.5 in ft.