I have added the answer as a pic due to difficulties pasting the text here.
Answer: 100% (double)
Explanation:
The question tells us two important things:
- Mass remains constant
- Volume remains constant
(We can think in a gas enclosed in a closed bottle, which is heated, for instance)
In this case we know that, as always the gas can be considered as ideal, we can apply the general equation for ideal gases, as follows:
- State 1 (P1, V1, n1, T1) ⇒ P1*V1 = n1*R*T1
- State 2 (P2, V2, n2, T2) ⇒ P2*V2 = n2*R*T2
But we know that V1=V2 and that n1=n2, som dividing both sides, we get:
P1/P2 = T1/T2, i.e, if T2=2 T1, in order to keep both sides equal, we need that P2= 2 P1.
This result is just reasonable, because as temperature measures the kinetic energy of the gas molecules, if temperature increases, the kinetic energy will also increase, and consequently, the frequency of collisions of the molecules (which is the pressure) will also increase in the same proportion.
Answer:
For any string, we use 
Explanation:
The pumping lemma says that for any string s in the language, with length greater than the pumping length p, we can write s = xyz with |xy| ≤ p, such that xyi z is also in the language for every i ≥ 0. For the given language, we can take p = 2.
Here are the cases:
- Consider any string a i b j c k in the language. If i = 1 or i > 2, we take
and y = a. If i = 1, we must have j = k and adding any number of a’s still preserves the membership in the language. For i > 2, all strings obtained by pumping y as defined above, have two or more a’s and hence are always in the language.
- For i = 2, we can take and y = aa. Since the strings obtained by pumping in this case always have an even number of a’s, they are all in the language.
- Finally, for the case i = 0, we take
, and y = b if j > 0 and y = c otherwise. Since strings of the form b j c k are always in the language, we satisfy the conditions of the pumping lemma in this case as well.
Answer:
Examples of reciprocating motion in daily life are;
1) The needles of a sewing machine
2) Electric powered reciprocating saw blade
3) The motion of a manual tire pump
Explanation:
A reciprocating motion is a motion that consists of motion of a part in an upward and downwards
or in a backward and forward (↔) direction repetitively
Examples of reciprocating motion in daily life includes the reciprocating motion of the needles of a sewing machine and the reciprocating motion of the reciprocating saw and the motion of a manual tire pump
In a sewing machine, a crank shaft in between a wheel and the needle transforms the rotary motion of the wheel into reciprocating motion of the needle.