Answer:
ITS THE LAST ONE(4TH), I THINK
Explanation:
Answer:
The maximum height reached by the body is 313.6 m
The time to return to its point of projection is 8 s.
Explanation:
Given;
initial velocity of the body, u = 78.4 m/s
at maximum height (h) the final velocity of the body (v) = 0
The following equation is applied to determine the maximum height reached by the body;
v² = u² - 2gh
0 = u² - 2gh
2gh = u²
h = u²/2g
h = (78.4²) / (2 x 9.8)
h = 313.6 m
The time to return to its point of projection is calculated as follows;
at maximum height, the final velocity becomes the initial velocity = 0
h = v + ¹/₂gt²
h = 0 + ¹/₂gt²
h = ¹/₂gt²
2h = gt²
t² = 2h/g

Answer:
this question makes no sense
Explanation:
like how do you get this question
Answer:
v =7.1 m/s
Explanation:
Given that
u = 3.35 m/s
t= 5 s
a= 0.75 m/s²
The final velocity = v
We know v = u +at
v=final velocity
u=initial velocity
Now by putting the values in the above equation
v = 3.35 + 0.75 x 5 m/s
v =7.1 m/s
Therefore the final velocity will be 7.1 m/s
Answer:
Distance covered by B is 4 times distance covered by A
Explanation:
For an object in free fall starting from rest, the distance covered by the object in a time t is

where
s is the distance covered
g is the acceleration due to gravity
t is the time elapsed
In this problem:
- Object A falls through a distance
during a time t, so the distance covered by object A is

- Object B falls through a distance
during a time 2t, so the distance covered by object B is

So, the distance covered by object B is 4 times the distance covered by object A.