Answer:
The granite block transferred <u>4080 joules</u> of energy, and the mass of the water is <u>35.84 grams</u>.
Explanation:
The equation needed to answer both parts of the question is:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat (J/g°C)
-----> ΔT = change in temperature (°C)
<u>Part #1:</u>
First, you need to find the energy transferred from granite block using the previous equation. You have been given the mass, specific heat, and change in temperature.
Q = ? J c = 0.795 J/g°C
m = 126.1 g ΔT = 92.6 °C - 51.9 °C = 40.7 °C
Q = mcΔT
Q = (126.1 g)(0.795 J/g°C)(40.7 )
Q = 4080
<u>Part #2:</u>
Secondly, using the energy calculated in Part #1, you need to calculate the mass of the water. You have calculated the energy transferred, and have been given the specific heat and change in temperature.
Q = 4080 J c = 4.186 J/g°C
m = ? g ΔT = 51.9 °C - 24.7 °C = 27.2 °C
Q = mcΔT
4080 J = m(4.186 J/g°C)(27.2 °C)
4080 J = m(113.8592)
35.84 = m
Answer:
So A covalent bond consists of the mutual sharing of one or more pairs of electrons between two atoms. These electrons are simultaneously attracted by the two atomic nuclei. A covalent bond forms when the difference between the electronegativities of two atoms is too small for an electron transfer to occur to form ions.
Explanation:
words to know: covalent bond, electronegativities, and simultaneously
Covalent Bond: A chemical bond formed when electrons are shared between two atoms. Usually each atom contributes one electron to form a pair of electrons that are shared by both atoms.
Electronegativities: the degree to which an element tends to gain electrons and form negative ions in chemical reactions.
Simultaneously: at the same time.
hope this helps!
Answer:
Explanation:
E = hc/λ
h = planck's constant = 6.66 x 10 ^ -34
c = speed of light = 2.98 *10^8 m/s
E = (6.66 x 10 ^ -34 )(2.98 *10^8)/32
= 19.85 * 10 ^-26
=0.62 x 10^-26
= 6.2 x 10^-27 J
Answer:
I believe the answer is A
Explanation:
I hope this helps :)
The first answer is nine you are currently correct