The answer is 'equal'. Hydroxide ions are OH- and Hydrogen ions are H+. Have you noticed they're opposite charges? Positive + negative = neutral. That's all there is to it :)
Answer:
λ = 0.45×10⁻⁶ m
Explanation:
Given data:
Wavelength of blue light = ?
Frequency of blue light = 6.69×10¹⁴ s⁻¹
Solution:
Formula;
Speed of wave = wavelength × frequency
Speed of wave = 3.00×10⁸ m/s
by putting vales,
3.00×10⁸ m/s = λ × 6.69×10¹⁴ s⁻¹
λ = 3.00×10⁸ m/s / 6.69×10¹⁴ s⁻¹
λ = 0.45×10⁻⁶ m
Answer:
C2H3Br + O2 → CO2 + H2O + HBr
Explanation:
The term balancing of chemical reaction equation has a unique meaning in chemistry. What it actually means is to ensure that the number of atoms of each element on the left hand side of reaction equation becomes equal to the number of atoms of the same element on the right hand side of the reaction equation.
When we look at the equation; C2H3Br + O2 → CO2 + H2O + HBr, the number of atoms of each element on the left and right hand sides of the given equation are not the same hence the equation is unbalanced.
If we look at the equation; 2C2H3Br + 5O2 → 4CO2 + 2H2O + 2HBr, the number of atoms of each element on both sides of the reaction equation are now equal, thus the later equation is the balanced version of the former.
It depends on the process.
Like for example if the process is isothermal(temperature is constant), you can use,
PV = constant or P1V1 = P2V2 where P1V1 are initial conditions and P2V2 are final.
For adiabatic process,
PV^gamma = constant or P1V1 ^gamma = P2V2 ^gamma.
where gamma = Cp
------
Cv
Cp = specific heat at constant pressure and Cv = specific at constant volume.
Value of Gamma will be given in question.
Hope this helps!
ask correctly so that your points cant make fun of others