Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
Answer:
1.25 m/s
Explanation:
Given,
Mass of first ball=0.3 kg
Its speed before collision=2.5 m/s
Its speed after collision=2 m/s
Mass of second ball=0.6 kg
Momentum of 1st ball=mass of the ball*velocity
=0.3kg*2.5m/s
=0.75 kg m/s
Momentum of 2nd ball=mass of the ball*velocity
=0.6 kg*velocity of 2nd ball
Since the first ball undergoes head on collision with the second ball,
momentum of first ball=momentum of second ball
0.75 kg m/s=0.6 kg*velocity of 2nd ball
Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg
=1.25 m/s
Answer:
B and D could both be right as they are quit similar.
Consider two rods of the same length and diameter,
Increasing the diameter of one would change the expansion qualities of that rod even though there would be no chemical changes,
However, leaving the physical appearance of both rods the same while applying a reactive substance (acid or something) to one of the rods would not necessarily change the physical appearance of that rod but could make a considerable change in the physical properties of that rod.
The free-body diagram of an apple falling through the air has weight of the apple pointing downwards and the air-resistance on the apple acting upwards.
When an object falls from up to the ground, the object falls under in the influence of acceleration due to gravity.
The vertical component of the force on the apple as it falls trough the air is given as;
∑Fy = 0
Fₙ - W = 0
Fₙ = W
where;
- <em>Fₙ is the frictional force on the apple acting upwards</em>
- <em>W is the weight of the apple acting downwards</em>
The free-body diagram of the apple is represented as follows;
↑ Fₙ
Ο
↓ W
Thus, the free-body diagram of an apple falling through the air has weight of the apple pointing downwards and the air-resistance on the apple acting upwards.
Learn more here:brainly.com/question/18770265
Time = (distance) / (speed)
Time = (4.12x10^16 m) / (3 x10^8 m/s)
Time = 1.37 x 10^8 seconds
Divide the seconds by 86,400 to get days. Then divide the days by 365 to get years.
Time = about 4.35 years