A voltmeter is connected in PARALLEL with the resistor.
People have diffrent body builds and bone structure
Answer:
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
U = (1/2)kx^2
U = (1/2)(5.3)(3.62-2.60)^2
U = 2.75706 J
Read more on Brainstorm - httpd://brainstorm/question/7981441#read more
Explanation:
<span>Total KE = KE (rotational) + KE (translational)
Moment of inertia of sphere is I = (2/5)mr^2
So KE (rotational) = (1/2) x I x w^2 = (1/2) x (2/5)mr^2 x w^2 = (1/5) x m x r^2 x w^2
KE (translational) = (1/2) x m x v^2 = (1/2) x m x (rw)^2 = (1/2) x m x r^2 x w^2
Hence KE = (1/5) x m x r^2 x w^2 + (1/2) x m x r^2 x w^2 = m x r^2 x w^2 ((1/5) + (1/2))
KE = (7/10) m x r^2 x w^2
Calculating the fraction of rotational kinetic energy to total kinetic energy,
= rotational kinetic energy / total kinetic energy
= (1/5) x m x r^2 x w^2 / (7/10) m x r^2 x w^2 = (1/5) / (7/10) = 2 / 7
The answer is 2 / 7</span>
It’s the velocity to the trex then divided by pie to get 8.3