Let f(x) = p(x)/q(x), where p and q are polynomials and reduced to lowest terms. (If p and q have a common factor, then they contribute removable discontinuities ('holes').)
Write this in cases:
(i) If deg p(x) ≤ deg q(x), then f(x) is a proper rational function, and lim(x→ ±∞) f(x) = constant.
If deg p(x) < deg q(x), then these limits equal 0, thus yielding the horizontal asymptote y = 0.
If deg p(x) = deg q(x), then these limits equal a/b, where a and b are the leading coefficients of p(x) and q(x), respectively. Hence, we have the horizontal asymptote y = a/b.
Note that there are no obliques asymptotes in this case. ------------- (ii) If deg p(x) > deg q(x), then f(x) is an improper rational function.
By long division, we can write f(x) = g(x) + r(x)/q(x), where g(x) and r(x) are polynomials and deg r(x) < deg q(x).
As in (i), note that lim(x→ ±∞) [f(x) - g(x)] = lim(x→ ±∞) r(x)/q(x) = 0. Hence, y = g(x) is an asymptote. (In particular, if deg g(x) = 1, then this is an oblique asymptote.)
This time, note that there are no horizontal asymptotes. ------------------ In summary, the degrees of p(x) and q(x) control which kind of asymptote we have.
I hope this helps!
9/4y-2=25
9/4y-2+2=27+2
9/4y=27
9/4y*4y=27*4y
9=4y*27,
1/3=4y, (9/27 simpltfies to 1/3, 1/3 divided by 4: 1/3*1/4=1/12)
1/12=y
Answer:y=1/12
..........................................
A proportional relationship is also a direct variation.
The general equation of direct cvariation is
y = kx,
where k is a number.
In your case, if k = -1, then y = kx becomes y = (-1)x which is the same as
y = -x
Answer:
The number of minutes advertisement should use is found.
x ≅ 12 mins
Step-by-step explanation:
(MISSING PART OF THE QUESTION: AVERAGE WAITING TIME = 2.5 MINUTES)
<h3 /><h3>Step 1</h3>
For such problems, we can use probability density function, in which probability is found out by taking integral of a function across an interval.
Probability Density Function is given by:

Consider the second function:

Where Average waiting time = μ = 2.5
The function f(t) becomes

<h3>Step 2</h3>
The manager wants to give free hamburgers to only 1% of her costumers, which means that probability of a costumer getting a free hamburger is 0.01
The probability that a costumer has to wait for more than x minutes is:

which is equal to 0.01
<h3>
Step 3</h3>
Solve the equation for x

Take natural log on both sides

<h3>Results</h3>
The costumer has to wait x = 11.53 mins ≅ 12 mins to get a free hamburger