Answer:
The value is 
Explanation:
From the question we are told that
The efficiency of the carnot engine is 
The efficiency of a heat engine is 
The operating temperatures of the carnot engine is
to 
The rate at which the heat engine absorbs energy is 
Generally the efficiency of the carnot engine is mathematically represented as
![\eta = [ 1 - \frac{T_1 }{T_2} ]](https://tex.z-dn.net/?f=%5Ceta%20%3D%20%20%5B%201%20-%20%5Cfrac%7BT_1%20%7D%7BT_2%7D%20%20%5D)
=> ![\eta = [ \frac{T_2 - T_1}{T_2} ]](https://tex.z-dn.net/?f=%5Ceta%20%3D%20%20%5B%20%5Cfrac%7BT_2%20-%20T_1%7D%7BT_2%7D%20%5D)
=> 
Generally the efficiency of the heat engine is

=> 
Generally the efficiency of the heat engine is also mathematically represented as

Here W is the work done which is mathematically represented as

Here
is the heat exhausted
So

=> 
=> 
Answer:v=3.08 m/s
Explanation:
Given
mass of student 
distance moved 
Force applied 
acceleration of system during application of force is a

using 
where v=final velocity
u=initial velocity
a=acceleration
s=displacement



Answer:
Option (c)
Explanation:
Both the bullets have same acceleration because they both falls under the influence of acceleration due to gravity.
The bullet which is fired from the gun has some initial velocity but the bullet which is dropped has zero initial velocity.
the acceleration is acting on both the bullets which is equal to the acceleration due to gravity and they both in motion in the influence of gravity.
Answer:
2.04 s
Explanation:
v = at + v₀
(-30.0 m/s) = (-9.8 m/s²) t + (-10.0 m/s)
t = 2.04 s
C) light waves travel faster than sound waves
You were correct