Explanation:
A point of temperature at which both solid and liquid state of a substance remains in equilibrium without any change in temperature then this temperature is known as melting point.
For example, melting point of water is
. So, at this temperature solid state of water and liquid state are present in equilibrium with each other.
Therefore, when a 100 g of given pure metal in solid state is heated at its exact melting point which is
then some of the solid will change into liquid state but the temperature will remains the same.
Answer:
1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm
Explanation:
An ideal gas is a set of atoms or molecules that move freely without interactions. The pressure exerted by the gas is due to the collisions of the molecules with the walls of the container. The ideal gas behavior is at low pressures, that is, at the limit of zero density. At high pressures the molecules interact and intermolecular forces cause the gas to deviate from ideality.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 1 atm
- V= 22.4 L
- n= ?
- R= 0.082

- T=273 K
Reemplacing:
1 atm* 22.4 L= n* 0.082
*273 K
Solving:

n= 1 mol
Another way to get the same result is by taking the STP conditions into account.
The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C (or 273 K) are used and are reference values for gases. And in these conditions 1 mole of any gas occupies an approximate volume of 22.4 liters.
<u><em>1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm</em></u>
I think the correct answer from the choices listed above is option A. <span>In an exothermic reaction, the bonding energy of the product is </span><span>less than the reactant because it is only at this condition that the energy is released by the reaction.</span>
The correct answer is A.
B is incorrect because that only applies to nuclear fission.
C is incorrect because it only applies to nuclear fusion.
D is incorrect because energy can be neither created nor destroyed meaning that this statement is physically impossible,
Answer:
friend me on here and imma send you the link Explanation: