Answer:
c. 0.750 atm
.
Explanation:
Hello!
In this case, since the two vessels have different volume, we can see that the gas is initially at 3.00 atm into the 1.00-L vessel, but next, it is allowed to move towards the 3.00-L vessel, meaning that the final volume wherein the gas is located, is 4.00 L; therefore, we use the Boyle's law to compute the final pressure:

Therefore the answer is c. 0.750 atm
.
Best regards!
Answer:
The same kind of coffee, the same coffee maker, the same amount and type of water, and the same electrical sources were used.
Explanation:
The molecular formula should have been give to you from ur teacher
Answer: The temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
Explanation:
According to ideal gas equation:

P = pressure of gas = 2300 mm Hg = 3.02 atm (760mmHg=1atm)
V = Volume of gas = 15 L
n = number of moles = 0.6
R = gas constant =
T =temperature = ?


Thus the temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
Fe3N2, also known as Iron (II) nitride, is an ionic compound.
Ionic compounds are compounds that consists of metals and non-metals bonded with ionic bonds. The metal ion gives up electron(s) to the non-metals.
Since iron is a metal and nitrogen is an non-metal, the bond they would form would be an ionic bond. Iron gives up 2 electrons to form iron(II) ion, while nitrogen gains 3 electrons to form nitride ion. Since one iron cannot let a nitrogen gain 3 electrons, so in the compound, there would be 3 iron (ii) ions that has given up 6 electrons in total while 2 nitride ions have gained 6 electrons in total.