Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,

Now, we will apply the law of conservation of momentum:

where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,

Now, we again use the third equation of motion for the upward motion of the ball:

where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,

<u>h = 3.5 m</u>
Gamma rays have the highest energies and the shortest wavelengths.
The statement is <u>false</u> because the sky <u>can change </u>colors during sunsets, sun rises, etc. The sky is not always blue.
The magnitude of the displacement of the car from the starting point to halfway around the track is 256 m.
Answer:
Explanation:
Since the race track is a circular track, the distance for one lap will be equal to the circumference of the circular track. And the circumference will be equal to the circumference of the circle.
Since the radius of the track is given as 200 m, then the circumference of the circular track will be
Circumference = 2πr = 2 × 3.14 × 200
So the circumference of the circular track = 1256 m.
So the starting point or position of the track is considered as zero and if the car has traveled half way means, the car has covered half of the circumference of the track.
As the circumference = 1256 m, then half of the circumference of the circle = 1256/2 = 256 m.
So the displacement is the measure of difference between the final position and initial position. As here the initial position is zero and the final position is the halfway around the track which is equal to 256 m.
Then Displacement = Final-Initial = 256-0= 256 m.
So the magnitude of the displacement of the car from the starting point to halfway around the track is 256 m.