<h2>Explanation:</h2><h3>3. </h3>
When light bounces back, it is <em>reflected</em>. (That's why you see your <em>reflection</em> in a mirror.) When light is bent from the path it is taking, it is <em>refracted</em>. The only answer choice that makes correct use of these terms is the third choice:
- Part of the ray is <em>refracted</em> into ray B; part of the ray is <em>reflected</em> as ray R.
_____
<h3>4.</h3>
The index of refraction is the ratio of the sine of the angle of incidence to the sine of the angle of refraction. Both angles are measured from the normal to the surface. The angle of refraction here is 12.5° less than the angle of incidence, 44°, so is 31.5°. Then the index of refraction of the medium is ...
n = sin(44°)/sin(31.5°) = 0.69466/0.52250 = 1.3299 ≈ 1.33
- none of the offered choices is correct. The closest is 1.34.
Answer:
This question assumes that the car accelerates at the same rate as when it went from 0 to 60km/h
24.29m/s or 87.4km/h
Explanation:
Let's find the acceleration of the car:
let vi=0, vf=60km/h (16.67m/s), Δt = 8.0s
a = (vf-vi)/Δt
a = (16.67m/s-0)/8.0
a = 2.08m/s^2
Now we can use this acceleration to find vf in the second part:
50km/h is 13.89m/s
a = (vf-vi)Δt
vf = aΔt + vi
vf = 2.08m/s^2*5.0+13.89m/s
vf = 24.29m/s (87.4km/h)
Complete Question
The complete question is shown on the first uploaded image
Answer:
The work done by the spring is = 
Explanation:
Force = torque × length
Given
F = 9.13 N
length (L) = 5.91 cm = 0.0591 m [Note 1 m = 100 cm ]
considering the formula above
where k denotes torque

Energy Stored 

An electromagnet is a type of magnet in which the magnetic field is produced using the current. The simplest form of an electromagnet is a wire wrapped around in a coil.
The strength of magnetic field of such magnet is given with this equation:

Where N is the number of loops in the coil, I is the strength of the current flowing through the coil, L is the length of the coil, and

is <span>permeability of the electromagnet core material.
From this equation, we can see that increasing both the current and number of loops will increase the strength of the magnet.
Both BLANKS should be
Increase. When you use the additional battery you will have more voltage and more voltage means more electricity.</span>