Answer:
strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other.
Explanation:
In liquids, the attractive intermolecular forces are <u>strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other</u>.
Intermolecular forces are the forces of repulsion or attraction.
Intermolecular forces lie between atoms, molecules, or ions. Intramolecular forces are strong in comparison to these forces.
<u />
Thus, sound will travel at a slower rate in the denser object. If sound waves of the same energy were passed through a block of wood and a block of steel, which is more dense than the wood, the molecules of the steel would vibrate at a slower rate. Thus, sound passes more quickly through the wood, which is less dense.
Well it's an alkali metal if that's what you're asking<span />
Answer:The conclusion is less accurate.
Explanation:
Feb 17, 2021 — He completes more than one trial. Why is it important for Daniel to do this?
Answer:
5.72 g ( 1 mol / 180.16 g ) ( 6.022 x 10^23 molecules / mole ) = 1.90x10^23 molecules