The equilibrium constant, k of the reaction in which case, the concentrations of the given reactants and products are as indicated is; Choice A; K = 3.1 x 10⁵
<h3>What is the equilibrium constant , k of the reaction as described in the task content?</h3>
It follows from above that the concentrations of the reactants and products are as follows; [H2] = 0.10 M, [N2] = 0.10 M, and [NH3] = 5.6 M at equilibrium.
Hence, the equilibrium constant of the reaction in discuss is;
K = [5.6]²/[0.10]³[0.10]
k = 5.6² × 10⁴
k = 3.136 × 10⁵
K = 3.1 × 10⁵.
Read more on equilibrium constant;
brainly.com/question/1619133
#SPJ1
The properties of a compound are nothing like the properties of th elements that combine to make it.
sodium chloride,NaCl, table salt, is a white cubic crystal, stable ionic compound, soluble in water
sodium is a soft metal, very reactive with water and air
chlorine is a yellow green gas that is poisonous and very reactive.
carbon dioxide, CO2, is a clear, colorless gas that puts out fires, plants use but we breath out.
carbon is a black solid, or a diamond
oxygen is a clear colorless gas that is needed for burning and breathing.
Answer:
Amount of heat energy released by light bulb = 25 joules
Explanation:
Given:
Energy receive by light bulb = 100 Joules
Energy released by light bulb as light energy = 75 Joules
Find:
Amount of heat energy released by light bulb
Computation:
We know that, energy is neither be created nor destroys
So,
Using Law of conservation of energy
Energy receive by light bulb = Energy released by light bulb as light energy + Amount of heat energy released by light bulb
100 = 75 + Amount of heat energy released by light bulb
Amount of heat energy released by light bulb = 100 - 75
Amount of heat energy released by light bulb = 25 joules
Answer:
Luiquid
Explanation:
The atoms in a liquid state of matter have a definite volume, eventhough they acquire the shape of the container that contains them, the volume will always be the same, while in a solid the shape and volume will remain constant, on the other hand for a gas, the substance will fill the container where it is, having different volumes.
Since we are told that 1L of air contains 0.21L of oxygen, you can use the conversion (0.21L O₂)/(1L air). That means that you can just multiply 6.0L by 0.21L to get 1.26L of O₂.
that means that the lungs can hold about 1.26L of oxygen.
I hope this helps. Let me know if anything is unclear.