The amount of energy required to change the temperature or phase of a reactant
Answer:
a=28600J; b=90.6 J/K; c=402 torr
Explanation:
(a) considering the data given
Vapour pressure P1 =0 at Temperature T1 = 42.43˚C,
Vapour pressure P2 = 273.15 at Temperature T2= 315.58 K)
Using the Clausius-Clapeyron Equation
ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
In 760/140 = ΔH/8.314 J/mol/K × (1/315.58K -- 1/273.15K)
ΔH vap= +28.6 kJ/mol or 28600J
(b) using the Equation ΔG°=ΔH° - TΔS to solve forΔS.
Since ΔG at boiling point is zero,
ΔS =(ΔH°vap/Τb)
ΔS = 28600 J/315.58 K
= 90.6 J/K
(c) using ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
ln P298 K/1 atm = 28600 J/8.314 J/mol/K × (1/298.15K - 1/315.58K)
P298 K = 0.529 atm
= 402 torr
Answer:
See Explanation
Explanation:
An ionic bond occurs due to electrostatic attraction between a positively charged ion and a negatively charged ion.
A metal and a ligand are bound by a coordinate covalent bond or a dative bond. This bond occurs due to donation of electron pairs from ligands to available orbitals on metals.
The formation of coordinate bonds is evident when neutral molecules or negative ions with non bonding electrons donate same to empty metal orbitals. This is sometimes shown by an arrow pointing from the ligands to the metal center.
For instance; tetraammine copper II ion is formed when four ammonia molecules donate a lone pair each to available vacant orbitals of the copper metal center to form [Cu(NH3)4]^2+.
Answer:
acid
Explanation:
solution with pH less than 7 is acid
those with more that 7 is base
those equal to 7 is neutral